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Wave propagation and transport in the middle atmosphere

By J. R. HoLToN
Department of Atmospheric Sciences, University of Washington,
Seattle, Washington 98195 U.S.A.

The dynamics of wave propagation and wave transport are reviewed for vertically
propagating, forced, planetary scale waves in the middle atmosphere. Such waves
can be divided into two major classes: extratropical planetary waves and equatorial
waves. The most important waves of the former class are quasi-stationary Rossby
modes of zonal wavenumbers 1 and 2 (1 or 2 waves around a latitude circle), which
propagate vertically only during the winter season when the mean winds are westerly.
These modes transport heat and ozone towards the poles, thus maintaining the mean
temperature above its radiative equilibrium value in high latitudes and producing the
high latitude ozone maximum. It is shown that these wave transport processes depend
on wave transience and wave damping. The precise form of this dependency is
illustrated for transport of a strongly stratified tracer by small amplitude planetary
waves.

The observed equatorial wave modes are of two types: an eastward propagating
Kelvin mode and a westward propagating mixed Rossby—gravity mode. These modes
are thermally damped in the stratosphere where they interact with the mean flow

- to produce eastward and westward accelerations, respectively. It is shown that in
the absence of mechanical dissipation this wave-mean flow interaction is caused by
the vertical divergence of a wave ‘radiation stress’. This wave-mean flow interaction
process is responsible for producing the well known equatorial quasi-biennial
oscillation.
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1. INTRODUCGTION

Planetary scale wave motions are essential components of the general circulation in the middle
atmosphere. Much of the observed temporal and spatial variability in winds, temperatures,
and trace species concentrations in this region is due directly or indirectly to wave motions.
Atmospheric waves play major roles in maintaining the zonal mean momentum and temperature
budgets as well as the ozone budget. Such waves can be classified according to their horizontal

Y, \

structures, their vertical structures, their sources of excitation, and their modes of interaction
with the mean flow.

This classification scheme allows planetary scale waves to be categorized on the basis of
the following dualities: (1) extratropical modes against equatorially trapped modes, (2) free
modes against forced modes, (3) external modes against internal modes, and (4) modes that
interact with the mean flow through wave transience against modes that interact through
wave dissipation. Of these various possible wave types the waves of primary importance for
middle atmosphere dynamics are forced internal modes which are excited by various processes
in the troposphere and propagate vertically into the middle atmosphere. The most significant
forced vertically propagating extratropical modes are the quasi-stationary Rossby waves, while
the most significant forced vertically propagating equatorial modes are the Kelvin wave and
the mixed Rossby—gravity wave. Both the extratropical modes and the equatorial modes are
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74 J.R.HOLTON

capable of generating mean flow changes through the process of wave-mean flow interaction.
The quasi-stationary Rossby waves interact with the mean flow primarily through the mecha-
nism of wave transience (local changes in wave amplitude) while the equatorial waves interact
with the mean flow primarily through the mechanism of wave dissipation (thermal and/or
mechanical damping). In both cases the waves transfer momentum vertically from the tropo-
spheric source region into the middle atmosphere. In the following sections these wave-mean
flow interaction processes are discussed for both extratropical waves and equatorial waves.

2. EXTRATROPICAL WAVES

The zonally asymmetric component of the circulation in the winter hemisphere middle
atmosphere is dominated by quasi-stationary Rossby waves of zonal wavenumbers 1 and 2.
These waves are merely the upward extensions of tropospheric planetary waves generated by
topographic forcing and by land—sea diabatic heating contrasts. Although both types of forcing
are strongest during the winter season, the confinement of these waves to the winter hemisphere
in the middle atmosphere is not due to seasonal changes in the forcing, but rather to the strong
dependence of the vertical wave transmission on the mean zonal wind profile. Likewise, oscil-
lations in wave amplitude and phase may occur not only as a result of oscillations in the forcing,
but also in response to changes in the transmission characteristics of the middle atmosphere
due to mean zonal wind changes. In addition, travelling free modes may alternately con-
structively and destructively interfere with the stationary forced modes to produce wave
amplitude variability as has been discussed, for example, by Leovy & Webster (1976).

An explanation of the observed confinement of quasi-stationary planetary waves to the
winter hemisphere in the middle atmosphere was first provided by Charney & Drazin (1961).
Although their analysis was carried out using spherical geometry, the essential physics may be
demonstrated using a mid-latitude A-plane’ in which the spherical geometry is replaced by
Cartesian coordinates with x directed eastward and y northward, but the dynamical effects
of the variation of the Corolis parameter with latitude are retained by setting df/dy = 8 =
constant. The quasi-geostrophic potential vorticity equation can then be written (Holton 1975)

dq/dt =S, (1)

S? alﬁ
2
where g =f+V ¢+N2 Pt az Po5s

o , 02 o d 0 0 0.
with \Y =$+6ﬁ’ cTt"é—ﬁu*”&HV’_aZ’
and § designates all sources and sinks of potential vorticity. Here,  is a geostrophic stream-
function so that u, = —,, v, = ¥,;fis the Coriolis parameter; N is the buoyancy frequency;
Po = po(2) is the basic state density; z = —H In (p/ps) is a log-pressure vertical coordinate;
p is the local pressure; p, is a standard reference pressure; H is a constant scale height.

Letting ¢ = ¥+’ and ¢ = 7+¢', where the overbars designate zonal means and primes
designate deviations, the zonal mean of (1) can be written as

og/dt = —d(q¥;) /oy +S. (2)
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Assuming that wave perturbations are O(a), where a designates a small amplitude, the per-
turbation form of (1) correct to O(a) is the linear wave equation ‘

o'  _90¢ oY og _ 3
ot o T ox ay“S’ (3)
, 19 Pofzalﬁ')
— P1Y/ A —
where q *V¢+poaz(,Nz'az
07, @ 12 (pfou
and o =P aéz(Nz az)'

(a) The Charney—Drazin criterion

If it is assumed that # = #(z) the linear wave equation (3) has separable solutions of the
form

¥ = W(z) pg¥ exp [i(kx+ ly —ket)]. (4)

Substitution from (4) into (3) and neglecting perturbation sources and sinks by setting §* = 0
yields the vertical structure equation

Y, ,+n¥ =0, (8)
1

N2T g,
where n? = [__1/__* (k2+l2)] -

- Pl
For n2 > 0 (5) has solutions in the form of internal (vertically propagating) waves while for
n® < 0 the solutions are external (vertically trapped) waves. For stationary waves (¢ = 0)
vertical propagation is thus possible only for mean zonal winds satisfying

0<a< U, : (6)

where U, = q,(k®+ 2+ f2/4N2H?)~1 is the Rossby critical velocity. Thus, vertical propagation
for stationary waves can occur only if the mean winds are westerly but less than a critical
velocity Ue. This criterion, first obtained by Charney & Drazin (1961), is of course based on
a highly simplified model of the mean zonal wind. Simmons (1974) and others have shown
that it is important to consider the meridional variation of # and that for realistic mean wind
conditions vertical propagation is possible for somewhat larger mean winds than indicated
by the Charney-Drazin criterion. However, qualitatively, equation (6) provides a valid guide
for propagation of stationary Rossby waves. In particular, the strong dependence of U; on
wavelength has been confirmed by many models and is undoubtedly the reason for the
observed dominance of quasi-stationary zonal wavenumbers 1 and 2 in the winter season.
The behaviour of stationary Rossby waves in the vicinity of a critical level where # = 0
(and hence 7% - o) has been explored in a number of theoretical studies. Dickinson (1970),
on the basis of linear theory, found that Rossby waves propagating meridionally towards the
# = 0 line near the equator would be absorbed near the critical line and hence produce easterly
accelerations of the mean flow. More recent calculations by Béland (1976) indicate that under
most conditions the Rossby wave critical level is a nonlinear phenomenon and that the waves
are reflected rather than absorbed. Observations (Van Loon et al. 1973) do, however, indicate
that in the Northern Hemisphere winter, zonal wavenumber 1 has phase lines that tilt with
latitude in the vicinity of the equatorial critical level, thus suggesting absorption at the critical
line. The Rossby wave critical level problem has, therefore, not yet been completely resolved.
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76 J. R. HOLTON

The question is an important one, however, because Tung & Lindzen (1978) have shown that
if the critical line behaviour is nonlinear, then for certain distributions of #(y, z) stationary
Rossby waves might become resonant and amplify anomalously to produce sudden strato-
spheric warmings as well as changes in the planetary wave structure in the troposphere.

(b) Wave—mean flow interaction

The dynamical processes through which quasi-stationary Rossby waves influence the mean
circulation in the stratosphere and mesosphere can be elucidated through consideration of
potential vorticity conservation. According to the zonal mean quasi-geostrophic potential
vorticity equation (2), in the absence of mean sources or sinks (§ = 0), 7 can be changed only
if there is a meridional flux of eddy potential vorticity, ¢'vj. This eddy flux can be expressed
in terms of wave transience and wave dissipation for the case of linear perturbations by multi-
plying (3) by ¢’ and averaging zonally to obtain

i _ gy = [¢'S"—2(3¢'%)/011/ 7, (7)
Thus, provided that §' = 0,
7 _[_0 55y, @ 7 (aj"l
T -5 @) e GO () (8)

It is then immediately obvious that, in the absence of wave transience, (9¢’2/dt = 0) and wave
dissipation (S’ = 0) g is constant in time so that there is no mean flow forcing by the waves.
This result is the famous Charney—Drazin non-interaction theorem (Charney & Drazin 1961),
which has recently been greatly generalized by Andrews & Mclntyre (19764, 1978). From (7)
it is clear that waves which are increasing in amplitude or undergoing damping (¢'S" < 0)
will produce potential vorticity fluxes down the gradient of mean potential vorticity. Decaying
waves, on the other hand, will produce countergradient fluxes of potential vorticity. Thus,
the eddy flux of potential vorticity cannot in general be parametrized as a simple eddy diffusion
process.

The potential vorticity flux due to wave transience is of special significance for the general
circulation of the middle atmosphere. A number of modelling studies have indicated that wave
transience plays an essential role in the development of sudden stratospheric warmings (see,
for example, Matsuno 1971; Holton 1976; Holton & Mass 1976). The primacy of the wave
transience contribution to mean flow forcing in the sudden warming situation has been specifi-
cally demonstrated by Holton & Dunkerton (1978), who explicitly computed the two terms
on the right in equation (8) for a p-plane channel model of forced wave-mean flow inter-
action. Because of the large vertical scale and consequent small temperature perturbations in
the observed quasi-stationary Rossby waves of the winter hemisphere, thermal damping
processes are not very important on the rapid (ca. 7 days) timescale of the sudden warmings.

(¢) Wave transport of vertically stratified tracers

Quasi-stationary Rossby waves serve not only to transport potential vorticity, and hence to
drive changes in the mean flow, but also transport trace constituents such as ozone. It turns
out that the net wave transport again depends on wave transience and dissipation. A particu-
larly simple and instructive analysis of the wave transport problem can be carried out for the
special, but important, case of a strongly vertically stratified tracer. This analysis should be
approximately valid for the ozone mixing ratio below its peak near 30 km, and is also appli-
cable to the transport of potential temperature.
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As in the previous subsection the analysis is based on quasi-geostrophic flow on the mid-
latitude f-plane. Thus, the horizontal flow is quasi-non-divergent;

Ou/0x=0/0y ~ O(e), (9)
where ¢ < 1 is the Rossby number. It is assumed that the tracer follows a conservation law
dX/dt = §, (10)

where X is the mixing ratio (alternatively, X could denote the potential temperature) and §
designates the sum of all sources and sinks.

/ y

— For strong vertical stratification it is convenient to define a basic state concentration depen-
g
;5 E dent only on height such that
O X(x, 9, 2, 1) = Xo(2) +X(5 4, 2, ). (11)
!
= O In the following analysis it is assumed that
E O
n oy [dX,
—ay -a-; ~ 0(68),

where ¢ = D/L is the aspect ratio, that is, the ratio of the vertical scale D to the meridional
scale L. With the aid of (9) and (11) the conservation equation (10) can then be written in
flux form correct to O(e) as follows:
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0 0 dX,
YR (xu) +’a; (xv) +w d—zo = 5. (12)

The concentration is now separated into zonal mean and eddy components by letting ¥ = ¥+ x’,
where x’ is assumed to be an O(a) deviation associated with the planetary wave disturbances.
Taking the zonal mean of (10) then yields

®__ 2oy ey (13)

while the perturbation equation correct to O(a) becomes

o'  _ox' ,9x, ,dX,
—-a-;+u—a—;+1) 'a—y'+w-—&z

=S (14)

p
s

i According to (13) the zonal mean tracer concentration for a strongly stratified tracer is

S E determined by a balance among three processes: (1) horizontal eddy flux convergence, (2)

= E vertical advection of the basic state, and (3) zonal mean sources and sinks. (If x designates

O potential temperature these terms represent the eddy heat flux convergence, the adiabatic

E O heating, and diabatic heating, respectively.) It is important to note that the transport effect
v

of the waves is not limited to the eddy flux term because the Eulerian mean vertical motion @
is itself partly driven by the waves. In fact, if § = 0 and wave transience and dissipation
vanish, the advection term wdX,/dz exactly balances the horizontal eddy flux convergence
so that there is no net transport. Thus, wave transience and dissipation play the same important
roles for transport of conservative tracers as they play in the momentum and heat budgets.
In order to examine explicitly the relation of transport to transience and dissipation it is
convenient to follow Andrews & MclIntyre (1976a) by introducing particle displacement
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fields &'(x, y, z, t), 7' (%, 9, 2, t), ' (%, y, 2, t), such that
D& =u+y'0u/dy; Dy =v; D =uw, (15)

where D, = 0/0t+#0d/0x is the rate of change following the mean zonal flow. The displace-
ment vector (&', %', {’) thus gives the location of a fluid parcel relative to the position which
the same parcel would have had in the absence of the wave motion (¢', v, w’). Corresponding
to this displacement field is a generalized Lagrangian mean () (Andrews & McIntyre 1978)
which differs from the Eulerian mean (7) in that (7)" is the average along the wavy material
line defined by the particle displacement field. Thus, as pointed out by Matsuno & Nakamura
(1979), the Lagrangian mean motion is the motion of the centre of mass of a wavy material
line which would be parallel to the x-axis in the absence of the wave motion. For small ampli-
tude waves the Lagrangian mean can be related to the Eulerian mean by the Taylor series
expansion

1 - o4’ oA’ oA’
’ ’ ’
At = A+¢ ¥ +7 e +¢ 'y +0(a). (16)

For quasi-nondivergent motion the term ¢'04’/0z is O(¢) and from (9) and (15) it is clear
that £, +7, ~ O(e). Thus, correct to O(e), '

AL =Z+a(77A)
Oy

= A+ 4. (17)

Here A5 = 8(7'A’) /Oy is the Stokes correction which relates the Eulerian mean to the Lagrangian
mean. This Lagrangian mean formalism provides a powerful tool for analysing wave trans-
ports.

The eddy flux 2"y’ can now be written in terms of wave transience and dissipation by multi-
plying (14) through by #’, averaging zonally and using the fact that ¥'D,y’ = X'v" to obtain

= e, 0 == o X  ——dX,
VX = S g () 0 (18)
Defining a Lagrangian perturbation ! by
X=X 1%+ 8 X, (19)
where, from (14) Dyxt = DX +v'x, +w'X,, =,

correct to O(a%), and noting that .
= 0'Dyy’ = F(0"%)e,
it is possible to rewrite (18) in the form

— —wi O [—= X —5d&X,] ——d&X
' = ' QY ll_llz___ll__(.) Tan! 2520 2.
VX =-'S +az[’”‘ b5, ¢ dz]ww 3 T 0@ (20)
Substituting from (20) into (13), and using the definition of the Stokes correction (17), then
yields the zonal mean budget equation:

X o dXy o & [ OX -—,—,dXo]
A 0 —— | — 2 -9 21
o ST S atay[”x LU ek Al 1)

In the absence of transience and damping (20) shows that

vy =y dX,/dz;
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thus, the horizontal eddy flux is proportional to the vertical gradient of the mean concentration
not to the horizontal gradient (Clark & Rogers 1979). Furthermore, the eddy flux convergence
is in this case simply equal to the advection by the vertical Stokes drift wg = d(y'w’)/dy
(Wallace 1978). However, if transience and damping vanish, the non-interaction theorem of
Andrews & Mclntyre (19764, 1978) requires that @™ = 0 (i.e. that fluid parcels not change
their mean heights). Thus from (21) there can be no net change in the mean concentration ¥.
In the long term mean, on the other hand, (21) implies a balance of the form

wldX,/dz = ST (22)

Thus, if dX,/dz > 0, the centre of mass for a material line must gradually drift upwards in
a region where the Lagrangian mean source, ST, is positive. For the case of potential tempera-
ture (22) has been used by Dunkerton (1978) to estimate the Lagrangian mean flow in the
stratosphere and mesosphere based on computed heating rates for solstice conditions (with
the approximation 8¢ ~ S).

Another interesting approximate form of the wave transport equation (21) can be obtained
for transport of a conservative tracer (§© = y! = 0) by planetary waves. Now, " and {’ are
nearly in phase quadrature for vertically propagating planetary waves. Thus, 4'{’ = 0 for
these disturbances. If the rate of lateral particle dispersion is approximated using the Taylor

1915) eddy diffusion hypothesi —
(1915) y diffusion hypothesis, K,, = $3/0(7%),
then (21) can be written approximately as

ox  —dX, 0 [ wg_;‘]' (23)

i —w E;-l“a;
Thus, the wave transport of a strongly vertically stratified tracer consists of the vertical motion
of the centre of mass plus a horizontal ‘diffusion’ due to the dispersive effects of wave tran-
sience. It is important to realize, however, that both the Lagrangian mean vertical advection
and horizontal diffusion are wave driven transports which in this case depend on wave
transience.

In summary, it should now be clear that calculation of Eulerian eddy fluxes does not in
itself give much insight into the net transport of a vertically stratified tracer. The generalized
Lagrangian mean formalism of Andrews & Mclntyre provides a much better framework for
analysis of wave transport processes.

3. EQUATORIAL WAVES

A particularly fascinating example of wave-mean flow interaction is provided by the inter-
action of the equatorially trapped Kelvin and mixed Rossby-gravity waves with the mean
zonal wind in the tropical stratosphere to producé the quasi-biennial oscillation (Holton &
Lindzen 1972). Both Kelvin and mixed Rossby-gravity waves are zonally propagating waves
which are excited by forcing in the equatorial troposphere. The nature of this forcing is not
known in any detail. However, latent heat release in convective storms appears to be the most
likely source for the waves. These waves propagate vertically with comparatively short vertical
wavelengths, and interact with the mean flow primarily through the mechanism of wave dissi-
pation. As a result of this interaction process the Kelvin waves produce westerly accelerations
of the mean zonal wind while the mixed Rossby-gravity waves produce easterly accelerations.
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(a) Kelvin waves

The Kelvin wave is an eastward propagating mode with negligible meridional velocity
perturbations, and with zonal velocity and pressure perturbations which are in geostrophic
balance and are symmetric with respect to the equator with latitudinal dependence given by

exp [—By*/2¢],
where y is the distance from the equator, # = 202/a is the value of df/dy at the equator, and
¢ is the phase speed relative to the mean flow. For small dissipation rates the vertical wave-
length of the Kelvin wave, L, ~ 2né/N, where N is the buoyancy frequency, depends only
on the Doppler shifted phase speed ¢, not on the zonal wavenumber and frequency separately.
(An extensive discussion of the properties of Kelvin waves and other equatorial modes is given
in Holton (1975).)

w E—u-

Ficure 1. Longitude-height section along the equator showing pressure, temperature, and wind perturbations
for a thermally damped Kelvin wave. Heavy wavy lines indicate material lines, short blunt arrows show
phase propagation. Areas of high pressure are shaded. Length of the small thin arrows is proportional to
the wave amplitude, which decreases with height owing to damping. The large shaded arrow indicates the
net mean flow acceleration due to the radiation stress divergence.

The observed Kelvin waves in the stratosphere seem to be limited to zonal wavenumbers
1 and 2. The waves have periods in the range of 10-20 days and vertical wavelengths of 6-12 km
(Wallace 1973). A longitude-height cross section showing the structure of a Kelvin wave in
the presence of weak thermal dissipation is shown in figure 1. The phase relations among the
zonal velocity, vertical velocity, pressure, and temperature perturbations are just those of an
eastward propagating internal gravity mode. In particular, phase lines propagate downward,
consistent with an upward energy propagation.

The role of thermal dissipation in wave-mean flow interaction can be elucidated in a
particularly simple manner for the Kelvin wave case. In the absence of mechanical dissipation
and horizontal shear of the mean flow the mean zonal flow acceleration due to Kelvin waves
1s given by

= ). (24)
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Eliassen & Palm (1961) showed that for waves of steady amplitude in the absence of dissi-
pation and critical levels (levels where the mean zonal wind speed equals the wave phase
speed), pou'w’ must be independent of height so that the mean flow forcing vanishes. To
examine the role of thermal dissipation it is again convenient to introduce the linearized
particle displacement {’(x, z, t), which satisfies D,{’ = w’, where for steady amplitude waves
with zonal phase speed ¢ the operator Dy = — (c— %) 0/0x. The perturbation zonal momentum

ti , /
equation Do’ = —(1/py) ' o,
thus implies that pyu’ = p’/(c — &). Therefore, the vertical momentum flux may be written

poiw = — TR,
so that the mean flow forcing is just

or 1 o[ LT
%= amt n) (25)

The wavy material lines {’(x, ¢) are shown at two different levels by the heavy solid lines
in figure 1. It should be noted that for adiabatic waves

‘Dtgl + w’yz = 0,

where 0 is potential temperature. Thus {’ = —6’/0, so that the material lines are also lines of
constant potential temperature. However, in the thermally damped case depicted in figure 1,
the potential temperature isolines should actually be shifted slightly eastward relative to the
material lines since thermal damping destroys the quadrature relationship between ¢’ and w’.
(No attempt has been made to portray this slight phase shift in the figure.)

Mean flow forcing by the Kelvin waves can be given a particularly simple physical inter-
pretation by using the mean flow equation (25). Now, — ', simply represents the net east-
ward stress due to the pressure force exerted by the fluid below a wavy material line on the
fluid above the material line. In the case shown in figure 1 this so called ‘radiation stress’ is
positive since p° > 0 where §, < 0, and decreases with height because the waves are damped.
Thus, the fluid contained between the two wave material lines is subject to a net eastward
force due to the action of the radiation stress. The magnitude of this net force is, as indicated
n (25), proportional to the rate of decrease of the radiation stress with height, which in turn
depends on the rate constant for the damping. Observations indicate that the Kelvin waves
in the equatorial stratosphere do have sufficient amplitude to drive the westerly phase of the
quasi-biennial oscillation through forcing due to wave dissipation. Kelvin waves damped
thermally are also the only plausible mechanism yet suggested for generating the westerly
phase of the semiannual zonal wind oscillation in the equatorial upper stratosphere and meso-
sphere (Dunkerton 1979).

(b) Mixed Rossby—gravity waves

The mixed Rossby—gravity mode is a westward propagating wave which has meridional
wind perturbations symmetric about the Equator and zonal velocity and pressure perturbations
antisymmetric with respect to the Equator. The latitudinal dependence of the pressure and
zonal velocity perturbations in the mixed Rossby gravity wave turns out to have the form

(Holton 1975) _ _—
Y exp [—m(l k(;g:) Py ],

6 Vol. 2g6. A
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where £ and o are the zonal wavenumber and frequency, respectively. These must satisfy the
condition 0 < kw < # in order that valid solutions exist. Observed mixed Rossby-gravity
waves have periods in the range of 3-5 days, zonal wavelength 10000 km and vertical wave-
lengths in the range of 4-8 km. These waves have their greatest amplitudes in the lower strato-
sphere during the westerly phase of the quasi-biennial oscillation. A longitude-height cross
section showing the structure of a mixed Rossby—gravity wave subject to weak thermal dissi-
pation is shown in figure 2. The diagram is for a latitude north of the equator. As in the
corresponding Kelvin wave figure, wavy material lines are again denoted by heavy solid lines.

Ficure 2. Longitude-height section along a latitude circle north of the equator showing pressure, temperature,
and wind perturbations for a thermally damped mixed Rossby—gravity wave. Areas of high pressure are
shaded. Small arrows indicate zonal and vertical wind perturbations with length proportional to the wave
amplitude. Meridional wind perturbations are shown by arrows pointed into the page (northward) and
out of the page (southward). The large shaded arrow indicates the net mean flow acceleration due to the
radiation stress divergence.

Again the radiation stress concept may be used to elucidate the wave-mean flow interaction
process. Andrews & McIntyre (1976 a) have shown that for small amplitude equatorial waves
that have vertical scales small compared to the vertical scale of the mean flow, the mean flow
acceleration to lowest order is given by

ow 0 s Kl
w0z

ot oy S

xz3

(26)

where Sy = w0 — v’ P,/ N2,
Spe = ww' + (Ey_f) 77@/]\/?
Here @' = p'/p,, and the Boussinesq approximation has been used for simplicity. However,

Eliassen & Palm (1961) showed that for steady inviscid waves

qu = W/(C_E)5 Sze = w’@’/((;_lj). (27)
Again, introducing the particle displacements ¢{'(x,y, z,t) and %'(x, 4, z, t), and observing
that for steady waves = —w'f(o—q); ql =—0)(c—),
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the relationships of (27) can be rewritten in the form
Swy = "'ﬂa,cdy; Sa:z = _ga,c(p,'

But, in the absence of mechanical dissipation, 7, and @’ are in phase quadrature for mixed
Rossby-gravity waves. Thus §,, = 0 and (26) becomes

du/ot = +0(P'LL)/ 0z, (28)

which is identical to (25) when the Boussinesq approximation (p, = constant) is applied.
Thus, just as in the case of the Kelvin waves the mean flow forcing for mixed Rossby—gravity
waves subject only to weak thermal damping can be expressed in terms of the vertical deriva-
tive of the radiation stress —p’(.. In the present case, however, it is clear from figure 2 that
P’ > 0 where {, > 0 so that the radiation stress exerts a net westward force on the fluid
contained between the two wavy material lines shown in the figure. Thus, the mixed Rossby—
gravity waves interact with the mean flow to produce the easterly phase of the quasibiennial
oscillation. .
(¢) The influence of mechanical dissipation and horizontal mean wind shear

In the above discussion it was assumed that wave dissipation was due to thermal damping
only. Addition of mechanical dissipation causes large changes in the wave-mean flow inter-
action process, especially in the case of the mixed Rossby—gravity wave. Since both the pressure
and vertical displacement fields for a mixed Rossby-gravity wave are antisymmetric with
respect to the equator, the mean flow acceleration, #, for a thermally damped wave must,
according to (28), be zero at the equator and have two easterly maxima symmetrically dis-
tributed on either side of the equator. However, as first shown by Andrews & Mclntyre
(1976a), addition of even a small mechanical dissipation drastically changes the distribution
of #;. There are two reasons for this sensitivity. In the first place, mechanical dissipation intro-
duces a non-zero viscous contribution to §,,, which for Rayleigh friction dissipation has the
form —A9’u’, where A is the rate coefficient for the damping. Secondly, mechanical dissipation
destroys the quadrature relationship between 7, and @’ so that §,, can no longer be neglected
n (26). In fact, mechanical dissipation produces a strong divergence of the lateral radiation
stress, —7, @', at the equator so that when mechanical dissipation is comparable in magnitude
to thermal dissipation, #, has a strong maximum in amplitude at the equator. This is just the
distribution of #, that is observed in the quasi-biennial oscillation.

Horizontal mean wind shear also has strong effects on the distribution of #,. Calculations
by Andrews & MclIntyre (19764) and by Simmons (1978) have shown that when only thermal
dissipation is present there is a tendency for the mean flow acceleration pattern to enhance an
existing cross equatorial horizontal shear. However, Boyd (1978) has shown that when mecha-
nical dissipation is included the mean flow acceleration pattern tends to diminish cross equa-
torial shear. This tendency for the waves to symmetrize the mean flow with respect to the
equator has also been demonstrated in a numerical model by Holton (1979).

One striking aspect of the above studies is the finding that the structure of the Kelvin wave
is determined almost entirely by the mean zonal wind at the equator. Even a rather strong
cross equatorial shear has very little influence on the zonal wind and pressure perturbations.
This may be demonstrated by comparison of figures 3 and 4, which show the Kelvin wave
structures in two numerical simulations, one with mean zonal flow symmetric about the
equator and the other with strong linear shear across the equator. The principal difference

6-2
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F1GURE 3. Perturbation zonal wind amplitude (m s~) and mean wind acceleration (10-% m s~2) for a mechani-
cally and thermally dissipated Kelvin wave in the presence of an equatorially symmetric mean flow.
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F1GURE 4. Perturbation zonal wind amplitude (m s~!) and mean wind acceleration (10-¢ m s2) for a mechani-
cally and thermally dissipated Kelvin wave in the presence of a mean flow with strong cross equatorial shear.

0
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FIGure 5. Perturbation zonal wind amplitude (m s—!) for a mixed Rossby—gravity wave in the presence of a
uniform mean flow (solid line) and a mean flow with linear shear of —0.5 (m s~*)/100 km (dashed line).
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between these two cases is that a weak asymmetric meridional wind perturbation is present
in the latter case, and the maximum mean flow acceleration is shifted slightly into the hemi-
sphere with the larger mean momentum deficit.

The structure of the mixed Rossby—gravity wave is more significantly affected by cross
equatorial shear. The amplitudes of the zonal wind perturbation for two simulations, one

with no mean wind shear, and the other with a weak horizontal shear #, = —0.5 (m s)/

100 km, are shown in figure 5. In the sheared case the zero line is shifted into the hemisphere
where the Doppler shifted frequency is largest while the peak amplitude is depressed in that
hemisphere and enhanced in the other hemisphere. With larger horizontal shears, more drama-
tic distortions occur in the wave structure. However, in all mixed Rossby—gravity wave forcing
cases investigated by Holton (1979) the wave driven mean flow acceleration acted to reduce the
initial cross equatorial horizontal shear, and the mean flow eventually evolved as an easterly
jet centred on the equator. Thus, it appears that as long as there is substantial mechanical
damping as well as thermal damping, the equatorial wave-mean flow interaction process will
tend to produce mean flow changes which are symmetric about the equator despite the asym-
metric horizontal shears introduced by the annual cycle. This tendency may explain the
remarkable equatorial symmetry observed for the quasi-biennial oscillation.

I wish to thank Mr Timothy Dunkerton for helpful conversations. This research was sup-
ported by the National Aeronautics and Space Administration, N.A.S.A. Grant NSG-2228.
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